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Abstract
We analyse the dynamics of gauge theories and constrained systems in general
under small perturbations around a classical solution in both Lagrangian and
Hamiltonian formalisms. We prove that a fluctuations theory, described by a
quadratic Lagrangian, has the same constraint structure and number of physical
degrees of freedom as the original non-perturbed theory, assuming the non-
degenerate solution has been chosen. We show that the number of Noether
gauge symmetries is the same in both theories, but that the gauge algebra in the
fluctuations theory becomes Abelianized. We also show that the fluctuations
theory inherits all functionally independent rigid symmetries from the original
theory and that these symmetries are generated by linear or quadratic generators
according to whether the original symmetry is preserved by the background or
is broken by it. We illustrate these results with examples.

PACS numbers: 11.10.Ef, 11.15.−q, 11.25.Db

1. Introduction

Dynamics of linearized perturbations, obeying the equations of motion of the quadratic action
formulated around a classical solution (background) of a field theory, has been widely used for
numerous applications3. Thus, it is used as a test of stability, where the fluctuations around a
stable solution—i.e., vacuum—have harmonic oscillator dynamics. In general, the quadratic
potentials also provide quantum corrections for an ‘effective’ mass of a solution, which can
be a wave packet such as a soliton or can identify tachyonic modes (with negative square
mass) which would signal an instability and so on. Let us emphasize that here we perturb only

3 We use interchangeably the words perturbations and fluctuations, the latter one corresponding more closely to the
language usual in quantum theory and statistical mechanics.
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fundamental fields in a theory, without making any expansion in the coupling constant, nor the
quantum loop expansion in h̄. These, and many other numerous uses of the fluctuations theory,
such as quantization of solitons, spontaneous breaking of symmetry, gravitational waves, etc,
have become so standard in physics that they can be found in any textbook on field theory.

Intuitively, the dynamics of the original and ‘linearized’ (described by a quadratic action)
theories should exhibit some parallelisms. In gauge systems, however, the presence of
unphysical degrees of freedom, and the frequent appearance of constraints, obscures this
intuition. For example, there are systems which seem to have more degrees of freedom when
linearized around some backgrounds [1]. In these quadratic theories, the gauge symmetry
appears as broken with respect to the full theory.

In addition, and connected with the previous observation, one may ask what is a criterion
for the Legendre transformation to commute with the process of getting the theory of quadratic
fluctuations in both Lagrangian and Hamiltonian approaches.

Other questions that may arise are whether the quadratic action contains the same rigid
and gauge symmetries as the original one, what its constraint structure looks like and how the
corresponding canonical theory is formulated.

In this paper, we address all these questions. We write a criterion that guarantees that
the quadratic action contains as much gauge freedom as the original one. In fact, we show
that the gauge algebra, if it was originally non-Abelian, in the fluctuations theory becomes
Abelianized. This agrees with the fact that a non-Abelian theory cannot be described by a
quadratic action, but it requires higher order terms.

We also show that the canonical quadratic Hamiltonian for the fluctuations is built up from
two different pieces of information: one is obviously the quadratic term of the expansion of
the original canonical Hamiltonian, whereas the other, not so obvious, consists in the quadratic
terms of the expansion of the original primary constraints. This result is quite natural from the
viewpoint of the Dirac–Bergman theory of constrained systems, on which we rely throughout
the paper. In connecting the Lagrangian and the Hamiltonian formulations at the level of the
original action with those at the level of the quadratic action, we see that a mismatch appears
between the respective Legendre maps (from tangent space to phase space), but that such
mismatch is of higher order in the fluctuations and thus does not affect the consistency of our
procedure.

Concerning the constraint algorithm in the fluctuations theory—either in the Lagrangian
or in the Hamiltonian formulation—it is shown that it reflects the structure of the algorithm
that holds for the original theory. This result is not a priori obvious, because when there is
more than one generation of constraints, that is, when new constraints arise from the evolution
of original primary constraints, then the process of truncation of higher order terms may not
commute with taking the time derivative and Poisson bracket. In particular, we show that the
original second class constraints yield second class constraints for the fluctuations theory and
first class constraints yield Abelianized first class constraints.

Noether symmetries and conserved quantities are also shown to be inherited from the
original theory to the fluctuations theory, but in a non-straightforward way. In fact, due to
the presence of the classical solution—the background—the original Noether symmetries
split according to whether they are preserved by the background or are broken by it.
Remarkably, it turns out that those that are respected by the background yield rigid symmetries
for the quadratic action with quadratic generators, whereas the broken symmetries yield
symmetries with linear generators. The importance of quadratic generators is noteworthy
in field theories with supersymmetry where a BPS state, a solution which preserves some
supersymmetries, is preferred as a ground state since it plays a significant role in the stability of
a theory.
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Regarding quantization around the classical solution, note that the gauge fixing is
technically simpler for the quadratic theory than for the original theory, owing to the Abelian
structure of the new gauge group. This means that one could have spared the technicalities
of gauge fixing in the non-Abelian case and proceed instead to the easier gauge fixing for the
quadratic—Abelian—theory around the classical solution.

After introducing some notation in the next section, we address the tangent space version
and the canonical version of the fluctuations theory in sections 3 and 4, where the connection
between both formalisms is analysed as well as their constraint algorithms. In section 5,
we study the Noether symmetries for the fluctuations theory. Examples are discussed in
section 6 and section 7 is devoted to conclusions.

2. Notation

We will use for simplicity the language of mechanics. Since our prime interests are gauge
field theories, a quick switch to the field theory language can be achieved by using DeWitt’s
condensed notation [2].

Consider the dynamics of a classical mechanical system with finite number of degrees
of freedom, described by a Lagrangian L(q, q̇) depending at most on first derivatives, up to
divergence terms, and which does not depend on time explicitly (first-order systems). The
local coordinates qi(i = 1, . . . , n) parameterize a configuration manifold Q of dimension n,
and therefore the entire dynamics of the system happens on the corresponding tangent bundle
TQ which is a configuration–velocity space (q, q̇). The Euler–Lagrange equations of motion
(e.o.m.) are4

[L]i := αi − Wij q̈
j = 0,

with the Hessian matrix

Wij ≡ ∂2L

∂q̇i∂q̇j
, (1)

and

αi := − ∂2L

∂q̇i∂qj
q̇j +

∂L

∂qi
.

Regular systems have invertible Hessian. We are, however, interested in singular Lagrangians
with non-invertible Hessian matrices, also called constrained systems [3]–[7], since the gauge
theories rely on them.

In order to pass to the Hamiltonian formalism, we apply the Legendre map FL : TQ →
T ∗Q to the original theory, which maps configurational space into phase space,

(q, q̇) → (q, p = p̂(q, q̇)),

where the momentum map is

p̂(q, q̇) := ∂L

∂q̇
.

We made the assumption that the rank of the Hessian matrix is constant everywhere. If this
condition is not satisfied throughout the whole tangent bundle, we restrict our considerations
to a region of it, with the same dimensionality, where this condition holds. For degenerate
systems with non-constant rank of W , see [8]. So we are assuming that the rank of the Legendre
map FL from the tangent bundle TQ to the cotangent bundle T ∗Q is constant throughout TQ
4 All functions are assumed to be continuous and differentiable as many times as the formalism requires.
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and equal to, say, 2n−k. The image of FL is locally defined by the vanishing of k independent
functions, φµ(q, p), µ = 1, 2, . . . , k. These functions are the primary constraints and their
pullback FL∗φµ to the tangent bundle is identically zero:

(FL∗φµ)(q, q̇) := φµ(q, p̂) = 0, ∀ q, q̇. (2)

The primary constraints form a generating set of the ideal of functions that vanish on the
image of the Legendre map. With their help, it is easy to obtain a basis of null vectors for the
Hessian matrix [9]. Indeed, applying ∂

∂q̇
to (2) we get

Wij

(
∂φµ

∂pj

) ∣∣∣∣
p=p̂

= 0, ∀ q, q̇.

The basis of null vectors γµ, with components γ
j
µ , is denoted as

γ j
µ := FL∗ ∂φµ

∂pj

. (3)

Working with this basis proves to be an efficient way to obtain results for the Lagrangian
tangent space formulation by the use of Hamiltonian techniques.

3. Expanding the Lagrangian around a classical solution

Denote the solution by qo. We have assumed that qo is non-degenerate, i.e., the equations
of motion [L] have simple zeros in q = qo. Although this condition is fulfilled for the most
of solutions in various models, there are Lagrangians with degenerate solutions leading, for
example, to ineffective (irregular) constraints [10–12].

In the Hamiltonian formalism, the criterion to have all constraints effective or functionally
independent in the vicinity of the solution qo is that their Jacobian in the phase space (q, p)

evaluated at (qo, po) has maximal rank [13]. This condition can be generalized to Lagrangian
formalism. The n Euler–Lagrange equations [L], containing the evolution equation (with
non-vanishing Hessian), generally imply the existence of primary Lagrangian constraints (we
introduce them below). Typically, its preservation will yield new, secondary constraints, then
tertiary and so on. In order to have full control of the quadratic fluctuations theory around
a solution qo, we will require that (i) the rank of the Hessian matrix be constant, (ii) the
equations of motion [L] to have simple zeros in q = qo (the solutions are non-degenerate) and
(iii) that all constraints are effective in a neighbourhood of qo (that is, its Jacobian with respect
to the tangent space coordinates is of maximum rank). Note that some of these requirements
may cease to hold only in one singular point, which can therefore pass unnoticed if the given
conditions are not explicitly checked at this point. This happens in Chern–Simons gauge
theories, which have been discussed in Hamiltonian formalism in [8, 11, 12].

Now we introduce the fluctuations theory Lagrangian. First, define the fluctuations Q by
means of

q = qo + εQ (⇒ q̇ = q̇o + εQ̇), (4)

with ε a small constant parameter, and expand

L(q, q̇) = L(qo, q̇o) + ε

(
Q

∂L

∂q

∣∣∣∣
o

+ Q̇
∂L

∂q̇

∣∣∣∣
o

)
+ ε2L̃(Q, Q̇; t) + O(ε3)

= L(qo, q̇o) + ε
d

dt

(
Q

∂L

∂q̇

∣∣∣∣
o

)
+ ε2L̃(Q, Q̇; t) + O(ε3), (5)



Fluctuations around classical solutions for gauge theories 9615

where5 we have generically denoted A(q, q̇)|o = A(qo, q̇o), recalled that [L]|o = 0 (the
omitted indices are saturated in an obvious way), and defined the quadratic Lagrangian for
small fluctuations6:

L̃(Q, Q̇; t) := 1

2

(
Q

∂2L

∂q∂q

∣∣∣∣
o

Q + 2Q
∂2L

∂q∂q̇

∣∣∣∣
o

Q̇ + Q̇
∂2L

∂q̇∂q̇

∣∣∣∣
o

Q̇

)
. (6)

(Since this Lagrangian leads to linear equations of motion, it is just the Lagrangian for
linearized fluctuations.) In general, L̃ will be time dependent because the solution qo(t)

depends on time explicitly. However, in order not to burden the notation, from now on this
time dependence will not be made explicit in the arguments of our functions. Note that
the Hessian matrix for L̃ coincides with the Hessian matrix for L computed on the solution
qo,W |o. If we now perform a change of variables q → Q (see the discussion on the change
of variables in appendix A), noting that ∂

∂q
= 1

ε
∂

∂Q
and ∂

∂q̇
= 1

ε
∂

∂Q̇
and applying (5), for the

Euler–Lagrange equations we obtain

[L(q, q̇)]q = 1

ε
[L(qo + εQ, q̇o + εQ̇)]Q = 1

ε
(ε2[L̃(Q, Q̇)]Q + O(ε3))

= ε[L̃(Q, Q̇)]Q + O(ε2). (7)

Thus, we see that if Q(t) is a solution of the Euler–Lagrange e.o.m. for L̃, then q(t) :=
qo(t) + εQ(t) is a solution of the e.o.m. for the original Lagrangian L up to terms of order ε2.

It can be verified that all quadratic first-order Lagrangians (which in general contain
linear terms) are equivalent to their own fluctuations theories. This can be seen by
making the coordinate transformation q = qo + q ′, where qo is a particular solution of
the e.o.m., which transforms the quadratic Lagrangian L(q, q̇) into a homogeneous function
L(qo, q̇o) + Lhom(q ′, q̇ ′) (up to a total derivative), where Lhom stands for the (second-order)
homogeneous part of L. Using the property of homogeneous functions of second degree,
Lhom(εQ) = ε2Lhom(Q), we conclude that the fluctuations Lagrangian is the homogeneous
part of the original Lagrangian, L̃(Q, Q̇) = Lhom(Q, Q̇). This is valid exactly (for any ε).
The fluctuations Lagrangian and the original quadratic Lagrangian have, therefore, equivalent
dynamical structures, including both gauge and rigid symmetries.

3.1. Lagrangian constraints

The equations [L] can be separated into the evolution equations and the constraints. Taking
into account that Wγµ = 0 identically, the primary Lagrangian constraints for L are

χµ := [L]γµ = (α − Wq̈)γµ = αγµ � 0, (8)

where �0 means ‘vanishing on shell’, that is, when the e.o.m. are satisfied. If we expand them
under q = qo + εQ we get (note that χµ(qo, q̇o) = 0 because of [L]|o = 0)

χµ = (αγµ)(q, q̇) = ε

(
Q

∂(αγµ)

∂q

∣∣∣∣
o

+ Q̇
∂(αγµ)

∂q̇

∣∣∣∣
o

)
+ O(ε2)

= ε

(
Q

∂([L]γµ)

∂q

∣∣∣∣
o

+ Q̇
∂([L]γµ)

∂q̇

∣∣∣∣
o

)
+ O(ε2)

= ε

(
Q

(
∂[L]

∂q
γµ

) ∣∣∣∣
o

+ Q̇

(
∂[L]

∂q̇
γµ

) ∣∣∣∣
o

)
+ O(ε2) =: εχ̃µ + O(ε2). (9)

5 Note that in field theory the second term in (5) is a divergence.
6 The size of the fluctuations depends not only on the values of the Q variables, but also on the ‘small’ parameter ε,
which has been factored out from the fluctuations theory.
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This result suggests that

χ̃µ := Q

(
∂[L]

∂q
γµ

) ∣∣∣∣
o

+ Q̇

(
∂[L]

∂q̇
γµ

) ∣∣∣∣
o

� 0 (10)

are the primary Lagrangian constraints for the theory derived from L̃. Now we will prove this
claim.

To this end, note that we can directly expand [L(q, q̇)],

[L(q, q̇)]q = [L(q, q̇)]qo + ε

(
Q

∂[L]

∂q

∣∣∣∣
o

+ Q̇
∂[L]

∂q̇

∣∣∣∣
o

+ Q̈
∂[L]

∂q̈

∣∣∣∣
o

)
+ O(ε2),

and use that [L(q, q̇)]qo = 0 by definition. Then, comparing the above expression with (7),
we conclude that the Euler–Lagrange e.o.m. for L̃ can be written as

[L̃(Q, Q̇)] = Q
∂[L]

∂q

∣∣∣∣
o

+ Q̇
∂[L]

∂q̇

∣∣∣∣
o

− W |oQ̈.

Thus, using the fact that γµ|o are the null vectors of the Hessian W |o for L̃, the primary
Lagrangian constraints for L̃ are

([L̃(Q, Q̇)]γµ)|o =
(

Q
∂[L]

∂q

∣∣∣∣
o

+ Q̇
∂[L]

∂q̇

∣∣∣∣
o

)
γµ|o = χ̃µ,

which coincides with the result in (10) and proves the claim.
The number of the constraints χ̃µ (µ = 1, . . . , k) is the same as the number of the

original constraints χµ since we are dealing with effective constraints, for which the Jacobian
∂(χ1,...,χk)

∂(q,q̇)

∣∣
o

has to be non-degenerate (has rank k). From this, it follows immediately that
χ̃1, . . . , χ̃k are linearly independent.

4. The canonical formalism

This result, χµ = εχ̃µ +O(ε2), makes one suspect that the full algorithm of constraints for the
original theory will be reproduced, step by step, within the theory of linearized fluctuations. On
the other hand, we know that the Lagrangian and Hamiltonian constraint algorithms are deeply
related, see [9, 14], in the sense that, step by step, one can determine a subset of the Lagrangian
constraints as pullbacks—under the Legendre map—of the Hamiltonian constraints, and the
rest from the canonical determination of some of the arbitrary functions that appear as Lagrange
multipliers in the Dirac Hamiltonian. Since the analysis of the constraint algorithm in the
canonical formalism is facilitated by the presence of the Poisson bracket structure, we now
turn to the canonical analysis.

If we use the change of variables q → Q, then p̂ becomes p̂ = 1
ε

∂L

∂Q̇
and, using the

expansion (5), we obtain

p̂ = 1

ε

(
ε
∂L

∂q̇

∣∣∣∣
o

+ ε2 ∂L̃

∂Q̇
+ O(ε3)

)
=: po + εP̂ + ε2F + O(ε3), (11)

where po := p̂(qo, q̇o) are the momenta corresponding to the solution of the e.o.m. and
F(Q, Q̇) are the functions quadratic in Q, Q̇ that can be easily determined. Note that P̂

define the Legendre map for the theory of linearized fluctuations. We see that at first order in
ε the expansion for p̂ behaves as expected.

The canonical Hamiltonian H(q, p) associated with the Lagrangian L is characterized
by H(q, p̂) = p̂q̇ − L. It was shown by Dirac that this function always exists and it is only
determined up to the addition of primary Hamiltonian constraints φµ.
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The fluctuation momenta P are defined in the canonical formalism from

p =: po + εP . (12)

Comparing this expansion with the expansion (11), we find that the pullback map p → p̂

implies, under the change of variables (4) and (12), the map P → P̂ + εF (Q, Q̇) + O(ε2),
that is,

p → p̂ ⇒ P → P̂ + εF (Q, Q̇) + O(ε2), (13)

which is different from the pullback map in the canonical fluctuations theory P → P̂ .
This mismatch between the two pullback operations—for the original theory and for the
fluctuations theory—is of order ε and has no consequences as regards the mutual consistency
of the Lagrangian and Hamiltonian versions of the fluctuations theory.

Now consider the expansion for the primary Hamiltonian constraints,

φµ(q, p) = φµ(qo, po) + ε

(
Q

∂φµ

∂q

∣∣∣∣
o

+ P
∂φµ

∂p

∣∣∣∣
o

)
+ ε2Bµ(Q,P ) + O(ε3)

=: εφ̃µ(Q,P ) + ε2Bµ(Q,P ) + O(ε3), (14)

which, again, suggests that

φ̃µ := Q
∂φµ

∂q

∣∣∣∣
o

+ P
∂φµ

∂p

∣∣∣∣
o

(15)

are the primary constraints for the canonical theory of linearized fluctuations. Bµ(Q,P ) are
functions quadratic in Q,P :

Bµ(Q,P ) := 1

2

(
Q

∂2φµ

∂q∂q

∣∣∣∣
o

Q + 2Q
∂2φµ

∂q∂p

∣∣∣∣
o

P + P
∂2φµ

∂p∂p

∣∣∣∣
o

P

)
. (16)

4.1. Primary constraints

Let us verify that φ̃µ are indeed the primary Hamiltonian constraints for the theory originating
in the fluctuations Lagrangian L̃. Since φµ(q, p̂) = 0 identically7, we also have

∂φµ

∂q

∣∣∣∣
o

+
∂φµ

∂p

∣∣∣∣
o

∂p̂

∂q

∣∣∣∣
o

= 0,

which implies

φ̃µ(Q, P ) =
(

P − Q
∂p̂

∂q

∣∣∣∣
o

)
∂φµ

∂p

∣∣∣∣
o

=
((

P − Q
∂L

∂q∂q̇

)
γµ

)∣∣∣∣
o

.

Now one can check that φ̃µ(Q, P̂ ) = 0 identically. Indeed, P̂ (Q, Q̇) = ∂L̃

∂Q̇
, and using (6),

P̂ (Q, Q̇) = Q
∂2L

∂q∂q̇

∣∣∣∣
o

+ Q̇W |o.

Now, since γµ|o are the null vectors of the Hessian matrix W |o, we obtain that((
P̂ − Q

∂L

∂q∂q̇

)
γµ

) ∣∣∣∣
o

= 0

identically, which proves that indeed φ̃µ are the primary constraints for the canonical theory
of linearized fluctuations.
7 Note that φµ(q, p) � 0 (the constraints vanish on the constraint surface, but their derivatives not), while
φµ(q, p̂) = 0 identically.
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4.2. The canonical Hamiltonian

Here, we find the quadratic Hamiltonian for the linearized fluctuations. Consider the canonical
Hamiltonian H(q, p) 8 and expand it in ε. This will define a candidate H̄ (Q, P ) for the
quadratic canonical Hamiltonian of linearized fluctuations, but it should be checked that
H̄ (Q, P̂ ) = P̂ Q̇− L̃. We will see that it is not exactly so. The reason is that, as Dirac already
emphasized, the true Hamiltonian dynamics is described by the Dirac Hamiltonian

HD(q, p) := H(q, p) + λµφµ. (17)

In order to find the quadratic canonical Hamiltonian for fluctuations theory, let us first expand
the canonical Hamiltonian,

H(q, p) =: H(qo, po) + ε

(
Q

∂H

∂q

∣∣∣∣
o

+ P
∂H

∂p

∣∣∣∣
o

)
+ ε2H̄ (Q, P ) + O(ε3),

where H̄ (Q, P ) is quadratic in Q,P ,

H̄ (Q, P ) := 1

2

(
Q

∂2H

∂q∂q

∣∣∣∣
o

Q + 2Q
∂2H

∂q∂p

∣∣∣∣
o

P + P
∂2H

∂p∂p

∣∣∣∣
o

P

)
. (18)

Since qo, po satisfy the e.o.m.,

q̇o = ∂H

∂p

∣∣∣∣
o

+ λµ(qo, q̇o)
∂φµ

∂p

∣∣∣∣
o

ṗo = −∂H

∂q

∣∣∣∣
o

− λµ(qo, q̇o)
∂φµ

∂q

∣∣∣∣
o

, (19)

where the Lagrange multipliers λµ can always be determined as definite functions in tangent
space by using the e.o.m. for q and the pullback p → p̂ (see appendix B for more details), we
can replace

H(q, p) = H(qo, po) + ε

(
Q

(
−ṗo − λµ(qo, q̇o)

∂φµ

∂q

∣∣∣∣
o

)
+ P

(
q̇o − λµ(qo, q̇o)

∂φµ

∂p

∣∣∣∣
o

))
+ ε2H̄ (Q, P ) + O(ε3)

= H(qo, po) + ε(P q̇o − Qṗo) − ελµ(qo, q̇o)φ̃µ + ε2H̄ (Q, P ) + O(ε3), (20)

where definition (15) has been used. Now consider the expansion for the functions λµ(q, q̇),

λµ(q, q̇) = λµ(qo, q̇o) + ελ̃µ(Q, Q̇) + O(ε2),

and recall (14). Then, the Dirac Hamiltonian (17) has the expansion

HD(q, p) = H(qo, po) + ε(P q̇o − Qṗo) + ε2(H̄ (Q, P )

+ λµ(qo, q̇o)Bµ(Q,P ) + λ̃µφ̃µ(Q, P )) + O(ε3). (21)

Unlike in the expansion of L given by equation (5), where the linear term does not contribute
to the Lagrangian e.o.m., now the linear term in HD does contribute to the Hamiltonian e.o.m.
At the end of this subsection, we will see that this is consistent with the Hamilton’s equations
of the original theory.

Expecting that the quadratic Dirac Hamiltonian of linearized fluctuations has the usual
form H̃D(Q,P ) = H̃ (Q, P ) + λ̃µ(Q, Q̇)φ̃µ(Q,P ), the result (21) strongly suggests
that the true canonical Hamiltonian for the fluctuations is not H̄ (Q, P ), but the whole
expression H̄ (Q, P ) + λµ(qo, q̇o)Bµ(Q,P ). We shall prove this assertion in the following.

8 As said before, the canonical Hamiltonian is not unique, but any choice satisfying H(q, p̂) = p̂q̇ − L(q, q̇) will
work.
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Equation (13) allows us to substitute p̂ for p in the lhs of (21) and P̂ + εF +O(ε2) for P in the
rhs. Taking into account that HD(q, p̂) = H(q, p̂) for φ(q, p̂) = 0, we obtain

HD(q, p̂) = H(qo, po) + ε(P̂ q̇o − Qṗo)

+ ε2(H̄ (Q, P̂ ) + λµ(qo, q̇o)Bµ(Q, P̂ ) + q̇oF (Q, Q̇)) + O(ε3). (22)

This expression must be compared with what we obtain directly from the fact that H(q, p̂) =
p̂q̇ − L. Using (12) and (5)

H(q, p̂) = p̂q̇ − L(q, q̇) = (
po + εP̂ + ε2F + O(ε3)

)
(q̇o + εQ̇)

−
(

L(qo, q̇o) + ε
d

dt
(Qpo) + ε2L̃(Q, Q̇) + O(ε3)

)
= poq̇o − L(qo, q̇o) + ε(P̂ q̇o − Qṗo) + ε2(P̂ Q̇ − L̃ + q̇oF ) + O(ε3)

=: H(qo, po) + ε(P̂ q̇o − Qṗo) + ε2(H̃ (Q, P̂ ) + q̇oF ) + O(ε3), (23)

where we have defined the true canonical Hamiltonian H̃ (Q, P ) such that H̃ (Q, P̂ ) =
P̂ Q̇ − L̃.

Now we compare (22) and (23). It follows that

H̃ (Q, P̂ ) = H̄ (Q, P̂ ) + λµ(qo, q̇o)Bµ(Q, P̂ ),

and hence the canonical quadratic Hamiltonian for the fluctuations is

H̃ (Q, P ) = H̄ (Q, P ) + λµ(qo, q̇o)Bµ(Q,P ). (24)

This proves our assertion.
Now (22) can be written as

HD = H(qo, po) + ε(P q̇o − Qṗo) + ε2H̃D + O(ε3), (25)

with H̃D = H̃ + λ̃µφ̃µ.

Now we can state the following result: if Q(t), P (t) is a solution of the Hamilton–Dirac’s
equations for the fluctuation dynamics, then q(t) := qo(t) + εQ(t), p(t) := po(t) + εP (t) is
a solution of the Hamilton’s equations for the original dynamics up to terms of order ε2.

To prove it just consider the equations of the original dynamics and use (25),

q̇ = 1

ε

∂HD

∂P
= 1

ε

(
εq̇o + ε2 ∂H̃D

∂P
+ O(ε3)

)
= q̇o + ε

∂H̃D

∂P
+ O(ε2),

ṗ = −1

ε

∂HD

∂Q
= −1

ε

(
−εṗo + ε2 ∂H̃D

∂Q
+ O(ε3)

)
= ṗo − ε

∂H̃D

∂Q
+ O(ε2).

Since the equations for the fluctuation dynamics are

Q̇ = ∂H̃D

∂P
, Ṗ = −∂H̃D

∂Q
, (26)

the result follows.

4.3. The algebra of constraints

The change of variables q → Q,p → P is canonical up to a factor ε2. We define a new
bracket for the theory of fluctuations by

{−,−}̃ = ε2{−,−}
in order to have {Q,P }̃ = {q, p} = δ.

Let us also define the auxiliary differential operator Dh, acting on functions of the original
variables q, p, as Dh := (

Q ∂
∂q

+ P ∂
∂p

)∣∣
o
, so that, for any f (q, p; t), it gives the first-order
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term in the expansion, f = f |o + εDhf + O(ε2), where f |o = f (qo, po; t). Now consider
the constraints φ̃µ. Let us first evaluate their Poisson brackets. Using (A.2), we find

{φ̃µ, φ̃ν }̃ = {φµ, φν}|o. (27)

Thus, the structure—first class, second class—of the primary constraints is fully inherited in
the fluctuations formalism and is fixed òn shell’. Suppose that the original primary constraints
φµ ≡ φ(0)

µ (the superindex (0) is for primary) split into first class constraints φ(0)
µ0

and second

class constraints φ
(0)

µ′
0
. Then, the secondary constraints are obtained as φ(1)

µ0
:= {

φ(0)
µ0

,H
}
. Now

we proceed in the same way with the fluctuations theory. The same splitting repeats for the
constraints φ̃(0)

µ . The only difference in finding the secondary constraints is that φ̃(0)
µ are in

general time dependent.
Then, using the form of the Hamiltonian (24) and the fact that it is always φ̃ = Dhφ (for

any indices), for the secondary constraints of the fluctuations theory we obtain

φ̃(1)
µ0

:= ∂

∂t
φ̃(0)

µ0
+

{
φ̃(0)

µ0
, H̃

}̃ = Q
d

dt

∂φ(0)
µ0

∂q

∣∣∣∣
o

+ P
d

dt

∂φ(0)
µ0

∂p

∣∣∣∣
o

+
{
φ̃(0)

µ0
, H̄

}̃
+ λµ(qo, q̇o)

{
φ̃(0)

µ0
, Bµ

}̃
. (28)

The bracket in the last term can be transformed with the help of the expansion (14) and the
identity (A.3) (see appendix A):{

φ̃(0)
µ0

, Bµ

}̃ = {
φ̃(0)

µ , Bµ0

}̃
+ Dh

{
φ(0)

µ0
, φ(0)

µ

}
. (29)

Since φ(0)
µ0

are first class constraints,
{
φ(0)

µ0
, φ(0)

µ

} = αν
µ0µ

φ(0)
ν for some functions αν

µ0µ
.

Therefore,

Dh
{
φ(0)

µ0
, φ(0)

µ

} = Dh
(
αν

µ0µ
φ(0)

ν

) = αν
µ0µ

∣∣
o
Dhφ(0)

ν = αν
µ0µ

∣∣
o
φ̃(0)

ν � 0, (30)

which shows that the last term in (29) vanishes on the surface of primary constraints (this is
the meaning of � at this stage).

Using the previous results and the e.o.m. (19), a little computation shows that

Q
d

dt

∂φ(0)
µ0

∂q

∣∣∣∣∣o + P
d

dt

∂φ(0)
µ0

∂p

∣∣∣∣∣
o

+ λµ(qo, q̇o)
{
φ̃(0)

µ0
, Bµ

}̃
� Q

d

dt

∂φ(0)
µ0

∂q

∣∣∣∣∣o + P
d

dt

∂φ(0)
µ0

∂p

∣∣∣∣∣
o

+ λµ(qo, q̇o)
{
φ̃(0)

µ , Bµ0

}̃
= Q

{
∂φ(0)

µ0

∂q
,H

} ∣∣∣∣∣o + P

{
∂φ(0)

µ0

∂p
,H

}∣∣∣∣∣
o

, (31)

whereas {
φ̃(0)

µ0
, H̄

}̃ = Q

{
φ(0)

µ0
,
∂H

∂q

} ∣∣∣∣
o

+ P

{
φ(0)

µ0
,
∂H

∂p

} ∣∣∣∣
o

. (32)

Altogether gives

φ̃(1)
µ �

(
Q

∂

∂q
+ P

∂

∂p

) {
φ(0)

µ0
,H

}∣∣
o

=
(

Q
∂

∂q
+ P

∂

∂p

)
φ(1)

µ0

∣∣
o

= Dhφ(1)
µ0

.

Note the complete analogy of the expansion of secondary constraints with that of the
primary constraints (14). Namely, there we had the expansion

φ(0)
µ (q, p) = εφ̃(0)

µ (Q, P ) + O(ε2),
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now we find

φ(1)
µ0

(q, p) � εφ̃(1)
µ0

(Q, P ) + O(ε2). (33)

On the other hand, recalling appendix A,

{Dhf,Dhg}̃ = {f, g}|o. (34)

Thus, our algebra of primary and secondary constraints for the fluctuations theory just mimics
the algebra of the original constraints computed at qo, po. This means in particular that the
first class constraints become Abelianized for the fluctuations theory.

In section 3, we showed that the original and fluctuations Lagrangians have equivalent
dynamical structures in the case of quadratic Lagrangians. Thus, the fact that the fluctuations
Lagrangian cannot have non-Abelian symmetry means that non-Abelian symmetry cannot be
described by a quadratic Lagrangian.

4.4. Dirac brackets

The constraint algorithm now continues in parallel for the original theory and for the
fluctuations theory. Let us relate the Dirac brackets at the level of the primary constraints for
both theories. The matrix of second class constraints{

φ̃
(0)

µ′
0
, φ̃

(0)

ν ′
0

}̃ = {
Dhφ

(0)

µ′
0
,Dhφ

(0)

ν ′
0

}̃ = {
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}∣∣
o

=: Mµ′
0ν

′
0

∣∣
o

is invertible. Consider the inverse Mµ′
0ν

′
0 |o. Dirac brackets for the fluctuations theory are then

defined by

{−,−}∗̃ := {−,−}̃ − {−, φ̃
(0)

µ′
0

}̃
Mµ′

0ν
′
0
∣∣
o

{
φ̃

(0)

ν ′
0
,−}̃

.

Then, for any functions f, g in the original phase space, the following Dirac bracket can be
calculated:

{Dhf,Dhg}∗̃ := {Dhf,Dhg}̃ − {
Dhf, φ̃

(0)

µ′
0

}̃
Mµ′

0ν
′
0
∣∣
o

{
φ̃

(0)

ν ′
0
,Dhg

}̃
= {f, g}|o − {

f φ
(0)

µ′
0

}∣∣
o
Mµ′

0ν
′
0
∣∣
o

{
φ

(0)

ν ′
0
, g

}∣∣
o

= {f, g}∗|o. (35)

Equation (35) is the analogous of (34), now for Dirac brackets.
The knowledge that the primary constraints φ̃(0)

µ and the secondary constraints φ̃(1)
µ0

for
the fluctuations theory are just φ̃µ = Dhφµ and φ̃(1)

µ0
= Dhφ(1)

µ0
, together with the results (34)

and (35), allows us to continue the constraint algorithm another step. The same parallelisms
continue until the algorithm is finished. This proves that the full algebra of constraints in
the fluctuations theory mimics the algebra of the original constraints computed at qo, po. In
consequence, the original theory and the fluctuations theory have the same number of physical
degrees of freedom. The Abelianization of the first class constraints for the fluctuations theory
is a general phenomenon9. Since combinations of the first class constraints generate gauge
symmetries, and since their number remains unchanged, the dimensions of the original gauge
group and the Abelian gauge group in the fluctuations theory are the same.

9 In fact, gauge symmetries for quadratic systems are always Abelian because the Hamiltonian constraints are linear—
thus their Poisson bracket is field independent—and hence the only way to exhibit first class constraints is through the
vanishing of their Poisson brackets with all the constraints. Non-Abelian theories and self-interaction—associated
with terms in the action of order higher than quadratic—go hand in hand.
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4.5. Connection with the Lagrangian constraints

Using results in [9], the primary Lagrangian constraints can be written as

χµ0 = FL∗{φ(0)
µ0

,H
} = FL∗φ(1)

µ0
(36)

χµ′
0
= FL∗{φ(0)

µ′
0
,H

}
+ λν ′

0(q, q̇)FL∗{φ(0)

µ′
0
, φ

(0)

ν ′
0

}
. (37)

The rationale of (36) is that the pullback of a Hamiltonian constraint must be a Lagrangian
constraint. As for (37), the idea is that the time evolution of a—now second class—constraint
must also vanish ‘on shell’ (here it is relevant that the Lagrange multipliers λν ′

0 are definite
functions in tangent space).

Let us use the notation10 Dl := (
Q ∂

∂q
+ Q̇ ∂

∂q̇

)∣∣
o

and the fact, easily proved, that

Dl ◦ FL∗ = ˜FL∗ ◦ Dh,

where ˜FL∗ is the pullback operation P → P̂ for the fluctuations theory. Now expand (36) in
ε, we get

χµ0 = εDl
(
FL∗φ(1)

µ0

)
+ O(ε2) = ε ˜FL∗(Dhφ(1)

µ0

)
+ O(ε2) = ε ˜FL∗φ̃(1)

µ0
+ O(ε2), (38)

which means that indeed relation (36) is preserved for the fluctuations theory as well, that is,
χ̃µ0 = ˜FL∗φ̃(1)

µ0
.

Let us do the same with (37),

χµ′
0
= ε

(
Dl

(
FL∗{φ(0)

µ′
0
,H

})
+ Dl

(
λν ′

0FL∗{φ(0)

µ′
0
, φ

(0)

ν ′
0

}))
+ O(ε2)

= ε
(

˜FL∗(Dh
{
φ

(0)

µ′
0
,H

})
+ (Dlλν ′

0)
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}∣∣
o

+ λν ′
0
∣∣
o

˜FL∗(Dh
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}))
+ O(ε2)

= ε
(

˜FL∗(Dh
{
φ

(0)

µ′
0
,H + λν ′

0
∣∣
o
φ

(0)

ν ′
0

})
+ (Dlλν ′

0)
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}∣∣
o

)
+ O(ε2). (39)

Recalling that Dlλν ′
0 = λ̃ν ′

0 , the form of the expansion (39) indicates that the objects
˜FL∗(Dh

{
φ

(0)

µ′
0
,H + λν ′

0
∣∣
o
φ

(0)

ν ′
0

})
+ λ̃ν ′

0
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}∣∣
o

(40)

should be the primary Lagrangian constraints χ̃µ′
0

for the fluctuations theory. Let us check
that this is indeed the case. Working only with the theory of fluctuations and using (29) and
the analogous of (31), (32), now applied to φ̃

(0)

µ′
0
, we get

χ̃µ′
0
= ˜FL∗

(
∂

∂t
φ̃

(0)

µ′
0

+
{
φ̃

(0)

µ′
0
, H̃

}̃)
+ λ̃ν ′

0 ˜FL∗{φ̃(0)

µ′
0
, φ̃

(0)

ν ′
0

}̃
= ˜FL∗

(
∂

∂t
φ̃

(0)

µ′
0

+ λµ
∣∣
o

{
φ̃

(0)

µ′
0
, Bµ

}̃)
+ ˜FL∗{φ̃(0)

µ′
0
, H̄

}̃
+ λ̃ν ′

0 ˜FL∗{φ̃(0)

µ′
0
, φ̃

(0)

ν ′
0

}̃
= ˜FL∗

(
∂

∂t
φ̃

(0)

µ′
0

+ λµ
∣∣
o

({
φ̃(0)

µ , Bµ′
0

}̃
+ Dh

{
φ

(0)

µ′
0
, φ(0)

µ

}))
+ ˜FL∗{φ̃(0)

µ′
0
, H̄

}̃
+ λ̃ν ′

0 ˜FL∗{φ̃(0)

µ′
0
, φ̃

(0)

ν ′
0

}̃
= ˜FL∗(Dh

{
φ

(0)

µ′
0
,H

})
+ λµ|o ˜FL∗(Dh

{
φ

(0)

µ′
0
, φ(0)

µ

})
+ λ̃ν ′

0
{
φ

(0)

µ′
0
, φ̃

(0)

ν ′
0

}∣∣
o

= ˜FL∗(Dh
{
φ

(0)

µ′
0
,H

})
+ λν ′

0 |o ˜FL∗(Dh
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

})
+ λ̃ν ′

0
{
φ

(0)

µ′
0
, φ̃

(0)

ν ′
0

}∣∣
o

= ˜FL∗(Dh
{
φ

(0)

µ′
0
,H + λν ′

0
∣∣
o
φ

(0)

ν ′
0

})
+ λ̃ν ′

0
{
φ

(0)

µ′
0
, φ

(0)

ν ′
0

}∣∣
o
, (41)

which is exactly (40).
The constraint algorithm in tangent space for the fluctuations theory continues in the same

way. The result is that for each constraint χ of the original theory there is a constraint χ̃ in
the fluctuations theory that can be determined through the expansion χ = εχ̃ + O(ε2).
10 Dl plays the same role in tangent space as Dh plays in phase space.
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5. Noether symmetries

Noether symmetries of the action are those continuous symmetries for which the infinitesimal
transformation δq induced on the Lagrangian L gives a total derivative—a divergence in
field theory. They exhibit a conserved quantity—conserved current in field theory—G such
that the equality

[L]qδq +
d

dt
G = 0 (42)

holds identically. Let us ε-expand (42) according to (4), using the expansion (7)
which includes the next order in ε. Note that δq = δq|o + εDlδq +O(ε2) and G =
G|o + εDlG + ε2D2lG +O(ε3), where we have introduced the notation D2lf for the second-
order term in the expansion of any f (q, q̇, t),

D2lf = 1

2

(
Q

∂2f

∂q∂q

∣∣∣∣
o

Q + 2Q
∂2f

∂q∂q̇

∣∣∣∣
o

Q̇ + Q̇
∂2f

∂q̇∂q̇

∣∣∣∣
o

Q̇

)
. (43)

Now the lhs of (42) becomes

[L]qδq +
d

dt
G = (ε[L̃(Q, Q̇)]Q + ε2[D2lL]Q + O(ε3))(δq|o + εDlδq + O(ε2))

+
d

dt
(G|o + εDlG + ε2D2lG + O(ε3))

= ε

(
[L̃(Q, Q̇)]Qδq|o +

d

dt
DlG

)
+ ε2

(
[L̃(Q, Q̇)]QDlδq + [D2lL]Qδq|o +

d

dt
(D2lG)

)
, (44)

where d
dt

G
∣∣
o

vanishes because G|o is a conserved quantity evaluated on a solution. Thus (42)
implies, to the lowest orders in the expansion,

[L̃(Q, Q̇)]Qδq|o +
d

dt
DlG = 0 (45)

and

[L̃(Q, Q̇)]QDlδq + [D2lL]Qδq|o +
d

dt
(D2lG) = 0. (46)

According to (45), the transformations δQ defined by

δQ := δq|o (47)

produce a Noether symmetry for L̃, with a linear conserved quantity DlG. Note that this
symmetry is trivial when the original symmetry preserves the background, that is, when
δq|o = 0. However, in this case, equation (46) takes the form of the conservation law (42).
Indeed, when δq|o = 0, from equation (46), the transformations δ̃Q defined by

δ̃Q := Dlδq (48)

lead to a Noether symmetry with a quadratic conserved quantity D2lG .
Equations (45) and (47), on one hand, and (46) and (48), on the other hand, are the

two standard mechanisms for which a Noether symmetry of L is inherited by L̃. We
will call the corresponding conserved quantities linear generators and quadratic generators,
respectively11. Let us make some comments on these two mechanisms.

11 The terminology of generators stems from the canonical framework, and the action of these generators is produced
by way of the Poisson bracket. There is the subtle point, however, that there may exist Noether symmetries in
tangent space that cannot be brought, i.e., projected, to phase space. In such a case the connection of the infinitesimal
transformation with the conserved quantity needs more elaboration (see [15]).
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(i) Summarizing the main result of this section, we observe that the presence of the
classical solution—the background—causes a splitting of the original Noether symmetries
according to whether they preserve the background or are broken by it. Those that are
broken by the background, equation (47) (first mechanism), will yield symmetries for the
quadratic fluctuations action with linear generators. Instead, the symmetries that preserve
the background, equation (48) (second mechanism), will yield symmetries with quadratic
generators.

(ii) Note that gauge symmetries for the fluctuations theory can only be realized through
the first mechanism (47). In fact, since gauge symmetries are generated in phase space by
appropriate combinations of first class constraints φi , the correspondence between first class
constraints of both theories already indicates that if

ηφ1 + η̇φ2 + · · ·
is a generator of Noether symmetries (with the gauge parameter η(t)) for the original theory,
then

ηφ̃1 + η̇φ̃2 + · · ·
with φ̃i = Dlφi is a generator of gauge Noether symmetries for the fluctuations theory, with
the additional fact, already pointed out, that these symmetries of L̃ are Abelian.

Noting that the constraints of the fluctuations theory are linear, we infer that the gauge
transformations for L̃ must be realized exclusively through the first mechanism (47). A
somewhat unexpected consequence of this fact is the general result that gauge symmetries
in the original theory that completely preserve the background cannot exist, otherwise the
fluctuations theory would change the number of physical degrees of freedom. Only for
particular restrictions on the gauge parameters, the gauge symmetries may preserve the
background. Generally, covariant theories—having solutions which may exhibit some Killing
symmetries—and Yang–Mills gauge theories are obvious verifications of this assertion.

(iii) Since the symmetries provided by (46), that is, the Noether symmetries of L̃ inherited
from the background-preserving symmetries of L, are always rigid, they do not change the
number of physical degrees of freedom of the fluctuations theory. Note that they do not exist
around any solution qo, but only around particular backgrounds, for which δq|o = 0.

(iv) We can keep looking at even higher orders of G in ε, generating, for instance, the
transformation law ˜̃δQ = D2lδq. These transformations will emerge as rigid symmetries of
L̃ when both δq|o and Dlδq vanish. Therefore, the more nonlinear the original theory is, the
richer the structure of inherited rigid symmetries in the fluctuations theory is likely to be.

(v) In this section, Lagrangian Noether symmetries have been studied. We can proceed in a
similar way with a Hamiltonian generator GH and, starting from (12), find the corresponding
linear and quadratic generators in the canonical fluctuations theory. For transformations
projectable to phase space, and belonging to the type that breaks the background, it can be
shown that if GH satisfies the conditions (described in [16]) to be a generator of canonical
Noether symmetries for the original theory, then DhGH satisfies the same conditions for the
fluctuations theory and becomes a generator of canonical Noether symmetries for it.

(vi) The obstruction to the projectability of Noether transformations from tangent space
to phase space [15] is related to the existence of a non-Abelian structure for the—primary
and secondary—first class constraints of the theory. In consequence, the symmetries of L̃

produced by the first mechanism (45) are always projectable to phase space. In fact, they are
field-independent transformations.

(vii) One can easily verify that the projectability to phase space of the rigid Noether
symmetries provided by (46) is directly related to the projectability of the original
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transformation. The requirement of the projectability of a given transformation δq is,
using (3),

γ i
µ

∂

∂q̇i
δqj = 0,

and for the transformations δ̃Qj = Dlδqj the requirement is, accordingly,

γ i
µ

∣∣
o

∂

∂Q̇i
δQj = 0,

where the zero modes of Hessian for L̃ are just γ i
µ

∣∣
o
. However, considering that

∂

∂Q̇i
δQj = ∂

∂Q̇i
Dlδqj =

(
∂

∂q̇i
δqj

) ∣∣∣∣
o

,

we can infer

γ i
µ

∂

∂q̇i
δqj = 0 ⇒

(
γ i

µ

∂

∂q̇i
δqj

) ∣∣∣∣
o

= 0 ⇒ γ i
µ

∣∣
o

∂

∂Q̇i
δQj = 0,

which proves our assertion.

6. Examples

6.1. Massive relativistic free particle

Consider the Lagrangian of a massive free particle in Minkowski spacetime,

L = −m
√

−ẋ2, (49)

with ẋ2 = ηµνẋ
µẋν and ẋµ = dxµ

dτ
, where ηµν is the Minkowski metric with ‘mostly

plus’ signature. There are no Lagrangian constraints even though the Hessian Wµν =
m√−ẋ2

(
ηµν − ẋµẋν

ẋ2

)
has one zero mode ẋν (Wµνẋ

ν = 0), since the Euler–Lagrange e.o.m.
are [L]µ = −Wµνẍ

ν and the expression [L]µẋν vanishes identically.
The Lagrangian has the gauge symmetry of τ -reparameterizations δτ = ε, under which

the coordinates transform as δx = εẋ and the Lagrangian as δL = − d
dτ

(εL). The momentum
vector (indices are raised and lowered with ηµν)

p̂ = ∂L

∂ ẋ
= m

ẋ√−ẋ2
(50)

satisfies p̂2 + m2 = 0 identically, thus showing the existence of a constraint in phase space

φ = 1
2 (p2 + m2) � 0. (51)

The canonical Hamiltonian vanishes because the Lagrangian is a degree one homogeneous
function of the velocities. The Dirac Hamiltonian is therefore

HD = λφ.

The arbitrary function in phase space λ is determined in tangent space by using the Hamiltonian
e.o.m.

ẋ = {x,HD} = λ{x, φ} = λp,

and applying the pullback map p → p̂ as defined in (50). We get

λ =
√−ẋ2

m
.



9626 O Mišković and J M Pons

φ is the only constraint in phase space and (being the first class) it generates the gauge
transformations

δx = {x, αφ} = αp, δp = {p, αφ} = 0,

with α(τ) being an arbitrary infinitesimal function. These transformations are
τ -reparameterizations and they can be put in the standard Lagrangian form for
reparameterization invariant theories, δx = εẋ, after applying the pullback (50) and redefining
the gauge parameter α(τ) = ε(τ )

m

√−ẋ2.
Now we will examine the fluctuations theory around a general solution of the e.o.m. of

L. This solution has the form xo = us(τ ) + c, with u, c being constant vectors. We can
conventionally assume that u2 = −1. s(τ ) is an arbitrary monotonically increasing function,
ṡ(τ ) =: v(τ) > 0. The fluctuations Lagrangian becomes

L̃ = m

2v(τ)
Q̇ΓQ̇,

where Γ is the projector transversal to the u direction, with the components µν = ηµν +uµuν .
The canonical Hamiltonian for fluctuations is, according to (24), H̃ (Q, P ) = H̄ (Q, P ) +

λ(qo, q̇o)B(Q,P ), where H̄ (Q, P ) = 0 and λ(qo, q̇o) = v(τ )

m
. The term B(Q,P ) in (14) is

now B(Q,P ) = 1
2 P2, and we obtain

H̃ (Q, P ) = v(τ)

2m
P2.

One can check that indeed H̃ (Q, P̂ ) = P̂Q − L̃(Q, Q̇).

6.1.1. Noether symmetries. Now we will separately discuss the different symmetries
inherited in the fluctuations theory.

Gauge symmetries. The phase space constraint φ̃ (recall that φ expands as φ = εφ̃ + O(ε2))
becomes

φ̃ = m(Pu),

and it generates the gauge transformations δQ = {Q, αφ̃}̃ = αmu = αpo given by
equation (47).

Rigid symmetries with linear generators. Let us see how the Poincaré symmetries of (49)
appear in the fluctuations theory. The Poincaré transformations δxµ = aµ + ωµ

νx
ν , generated

by Gp = pµ(aµ + ωµ
νx

ν) (the subindex p is for Poincaré), become

δQµ = δxµ|o = aµ + ωµ
ν(s(τ )uν + cν) = aµ + ωµ

νc
ν + s(τ )ωµ

νu
ν

=: dµ + s(τ )rµ, (52)

with dµ arbitrary and rµ satisfying ru = 0. Both dµ and rµ are infinitesimal vectors.
Since the symmetry is Abelian and field independent, the finite transformations have
just the same form with dµ and rµ finite. The generator of these symmetries is just
DhGp = (dµ + s(τ )rµ)Pµ + mrµQµ. Thus, as Noether symmetries for L̃ we obtain the
usual translations d and the particular time-dependent translations s(τ )r orthogonal to u.

The background is preserved for parameters ωµ
ν and aµ such that ωµ

ν = 0 and
aµ + ωµ

νc
ν = 0. For this specific set of parameters, which imply dµ = rµ = 0 and
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hence DhGp = 0, the Poincaré symmetries will be realized with quadratic generators, as we
show later.

Other rigid symmetries with linear generators. Besides the gauge and Poincaré symmetries,
the free particle Lagrangian in Minkowski spacetime exhibits other Noether symmetries. Take
for instance the quantity

mxΓ(p)w,

with Γ(p) being the projector transversal to the momentum p,

(p)
µν = ηµν +

pµpν

−p2
,

and with w being an arbitrary—infinitesimal—constant vector. Since this quantity has no
explicit time dependence and has vanishing Poisson bracket with the only constraint, φ, of the
theory, it fulfils the conditions12 ∂G

∂t
+ {G,H } � φ and {G,φ} � φ (recall that the canonical

Hamiltonian vanishes in our case) to be a generator of canonical Noether transformations. In
fact, we can use a simpler version for it,

Gg = mxµ
(
ηµν +

pµpν

m2

)
wν,

where we have used the constraint φ. Now

{Gg, φ} = 2(wp)

m
φ,

which still fulfils the conditions for being a canonical generator. This generator produces the
transformations

δx = {x,Gg} = 1

m
((pw)x + (xp)w),

which, restricted to the background xo = us(τ ) + c, po = mu, give the transformations of the
fluctuations

δQ = δx|o = s(τ )(−w + (uw)u) + (uc)w + (uw)c.

(Note that δx|o = 0 ⇒ w = 0 ⇒ Gg = 0, thus there is no room in this case for the
second mechanism (46), (48).) The piece s(τ )(uw)u is already included within the gauge
transformations, and the last two pieces are just translations, already described too. What
seems to be a new piece,

δQ = −s(τ )w,

is in fact a combination of a gauge transformation in the u direction and the transformation
obtained in (52), orthogonal to u.

Rigid symmetries with quadratic generators. The original Lorentz transformations with
parameters such that ωµ

νu
ν = 0, aµ + ωµ

νc
ν = 0 yield transformations with quadratic

generators for the fluctuations theory. The generator is

D2hGp = Pµωµ
νQ

ν

with ωµ
νu

ν = 0, where the operator D2h is defined in phase space as D2l is in tangent space,
as shown in equation (43). The transformations are

δQµ = ωµ
νQ

ν,

again with the rotation parameter ω restricted to the subspace orthogonal to u, i.e. with
ωµ

νu
ν = 0. For example, when uµ = δ

µ

0 is the unit vector along the time direction, the

12 Here, the notation ‘�’ means an equality on the primary constraint surface only.
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condition ωµ
νu

ν = 0 becomes ωµ
0 = 0, giving the transformations (in the index notation

µ = (0, i))

δQ0 = 0, δQi = ωi
jQ

j ,

which describe the infinitesimal spatial rotations.

6.2. Yang–Mills theory

In a field theory, the coordinates qi(t) are exchanged by the fields φi,x(t) := φi(t, x), where
the spatial point x plays the role of a continual index. In consequence, summations

∑
i become

integrals
∑

i

∫
dx, derivatives ∂

∂qi (t)
become functional variations

∫
dx δ

δφi(t,x)
, while all other

variables, for example momenta pi(t), become densities πi(t, x). The Lagrangian density
L(φ, ∂φ) depends on the fields φ, velocities φ̇ and spatial gradients ∂φ

∂x . The Lagrangian
is then L(φ, φ̇) = ∫

dxL(φ, ∂φ). All boundary terms are neglected (the fields vanish at
the boundary fast enough) and therefore the Lagrangian density L is determined up to a
total divergence (and similarly for a Hamiltonian density H). The basic Poisson bracket
is {φi(x), πj (x

′)}t=t ′ = δi
j δ(x − x′), but writing the arguments x, x ′ and δ-function will be

omitted for the sake of simplicity.
Consider the Yang–Mills (YM) field theory described by the Lagrangian (density)

L(A, ∂A) = −k

4
Fa

µνF
µν
a . (53)

The gauge field Aa
µ(t, x) =: Aa

µ(x) and the associated field strength Fa
µν = ∂µAa

ν − ∂νA
a
µ +

f a
bcA

b
µAc

ν depend on the coordinates xµ = (x0, xi) = (t, x) of Minkowski spacetime. The
constant k (usually denoted by 1

/
g2

YM) is dimensionless and positive. The indices a, b, . . . label
the Lie generators of a non-Abelian (semi-simple) Lie group with the structure constants fabc

and the Cartan metric gab.13 The YM Lagrangian is invariant under the gauge transformations
δAa

µ(x) = Dµαa(x) ≡ ∂µαa + f a
bcA

b
µαc. The Euler–Lagrange e.o.m.

[L]µa := ∂L
∂Aa

µ

− ∂ν

∂L
∂
(
∂νAa

µ

) = kDνF
νµ
a (54)

have singular Hessian W
µν

ab = kgab(η
µν + ηµ0ην0), with zero modes (γb)

a
µ = δ0

µδa
b , leading to

the primary Lagrangian constraints [L]0
a = kDiF

i0
b � 0.

Defining the canonical momenta

π̂µ
a (A, ∂A) = ∂L

∂Ȧa
µ

= −kF 0µ
a , (55)

we pass to Hamiltonian formalism and find primary
(
π0

a

)
and secondary (θa) constraints

π0
a � 0, θa ≡ π̇0

a = Diπ
i
a � 0, (56)

with the Dirac Hamiltonian density

HD = 1

2k
πi

aπ
a
i +

k

4
Fa

ijF
ij
a − Aa

0θa + λaπ0
a . (57)

Lagrange multipliers λa(x) can be determined in tangent space (see appendix B) from
Hamilton–Dirac’s equations, λa(A, Ȧ) = Ȧa . The components Aa

0 play the role of Lagrange
multipliers for secondary constraints θa . These constraints do not evolve in time since
θ̇ a = −f c

abA
b
0θc � 0 and thus there are no new constraints. (In calculation, the identity

13 Minkowski metric ηµν raises and lowers spacetime indices, and the Cartan metric gab raises and lowers group
indices.
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[Di,Dj ]va = f a
bcF

b
ij v

c was used.) All constraints are first class and the only nontrivial
brackets close non-Abelian algebra

{θa, θb} = f c
abθc. (58)

The canonical generator

G[α] =
∫

dx
(
D0α

aπ0
a − αaθa

)
(59)

induces gauge transformations

δAa
µ = {

Aa
µ,G[α]

} = Dµαa, δπµ
a = {

πµ
a ,G[α]

} = −f c
abα

bπµ
c . (60)

The transformation law for πa
µ is consistent with δπ̂a

µ obtained from (55).

6.2.1. Fluctuations theory. Consider now the small fluctuations Q expanded as A = Ā + εQ

around a solution Ā of the e.o.m. (54). Then, the corresponding field strength expands as

Fa
µν = F̄ a

µν + ε
(
D̄µQa

ν − D̄νQ
a
µ

)
+ ε2f a

bcQ
b
µQc

ν,

where all hatted operators denote these operators evaluated at Ā. Therefore, we find the
Lagrangian for fluctuations theory:

L̃(Q, ∂Q) = −k

2

[
D̄µQν

a

(
D̄µQa

ν − D̄νQ
a
µ

)
+ f a

bcF̄
µν
a Qb

µQc
ν

]
. (61)

The canonical formulation of (61) can be obtained directly from the original Hamiltonian
analysis, by expanding it as A = Ā + εQ and π = π̄ + εP around a solution Ā, π̄ of the
canonical e.o.m. Here, the basic bracket is {Q,P }̃ = 1. Linear terms of the original constraints
(56) give the primary

(
P 0

a

)
and secondary (θ̃a) constraints in the fluctuations theory:

P 0
a � 0, θ̃a = D̄iP

i
a + f c

abQ
b
i π̄

i
c � 0.

The Dirac Hamiltonian (57) with the multipliers Ȧa
0 = dĀa

µ

dt
+ εQ̇a

0 ≡ λ̄ + ελ̃ expands as

HD (A, π, λ) = H
(
Āa

µ, π̄µ
a

)
+ ε

(
dĀa

µ

dt
P µ

a − dπ̄
µ
a

dt

)
Qa

µ + ε2H̃D(Q,P, λ̃) + O(ε3),

where H̃D = H̃ + λ̃aP 0
a . The canonical Hamiltonian of the fluctuations theory is

H̃ = 1

2k
P i

aP
a
i +

k

2
D̄iQj

a

(
D̄iQ

a
j − D̄jQ

a
i

)
+

k

2
f a

bcF̄
ij
a Qb

i Q
c
j + f a

bcĀ0aP
j

b Qc
j − Qa

0 θ̃a.

This result can also be obtained directly from H̃ = P̂Q − L. We find that the constraint
algebra is Abelianized,

{θ̃a, θ̃b }̃ = f c
abθ̄c ≡ 0,

as expected from (27).
Consider now symmetries of the fluctuations theory. The gauge generator (59) expands

as G[α] = εG̃[α] + ε˜̃G[α], where the linear (G̃) and quadratic (˜̃G) generators are

G̃[α] =
∫

dx
(
D̄0α

aP 0
a − αaθ̃a

)
, (62)

˜̃G[α] = −
∫

dx f c
abα

aQb
µP µ

c . (63)
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Linear generator induces Abelianized gauge symmetries δQa
µ = D̄µαa , in agreement with

(47). ˜̃G[α] is a generator of rigid symmetries in fluctuations theory only if there are such
parameters αa and vacuums Āa , for which δĀa

µ = D̄µαa = 0. Then, the transformations

δ̃Qa
µ = f a

bcQ
b
µαc, δ̃P µ

a = −f c
abP

µ
c αb

leave H̃ invariant. Similarly, δ̃Q leaves L̃ invariant. Indeed, under the transformations
δ̃Qa

µ = f a
bcQ

b
µαc, the Lagrangian (61) changes as

δ̃L̃ = −kfabc

[(
D̄µQa

ν − D̄νQ
a
µ

)
Qνb + Qa

µQb
νD̄

ν
]
D̄µαc,

where the identity fabcD̄[µQa
ν]D̄

[µQν]b ≡ 0, the Jacobi identities f c
a[bfde]c ≡ 0 and

[D̄µ, D̄ν]αc = f c
aeF̄

a
µν

αe have been used14. In that way, for the backgrounds for which
D̄αa = 0, the fluctuations Lagrangian becomes invariant, δ̃L̃ = 0. The condition D̄αa = 0
on the gauge parameter αa is not trivial. The existence of a solution depends on the topology
of a manifold, where the YM theory is defined, and on the boundary conditions for αa , as
well as on the properties of the background Ā (such as its possible winding numbers, etc).
Additionally, αa has to be globally defined.

7. Conclusions

This work is dedicated to the study of the dynamics of small fluctuations oscillating around
a classical solution of a gauge theory. This system, where the fluctuation is a fundamental
field, is described by the explicitly time-dependent quadratic Lagrangian or Hamiltonian. We
show that in first-order systems, that is, ordinary tangent space or phase space formulations, it
is permitted to choose freely between the Lagrangian and Hamiltonian formalisms, with the
certainty that the same result will be reached at the end, assuming that the conditions (i)–(iii)
at the beginning of section 3 have been fulfilled. We show that in such a case, the Legendre
transformation commutes with the transformation which maps the original Lagrangian to the
quadratic one, at first order in the fluctuations expansion. In fact, the mismatch in Lagrangian
and Hamiltonian descriptions occurs in higher orders in the expansion parameter ε, but it does
not affect the consistency of neither of these two descriptions.

Other results of our analysis are the following. While the fluctuations Lagrangian is
defined as the quadratic term of the original Lagrangian, the fluctuations canonical Hamiltonian
contains, apart from the quadratic term coming from the original canonical Hamiltonian, also
the contribution of the quadratic part of primary constraints and the corresponding Lagrange
multipliers computed for the classical solution under consideration.

Furthermore, we prove that, under the assumptions made in section 3, this mapping, or
‘linearization’ of the theory (since the equations of motion become linearized by it), entirely
keeps the structure of the original theory in the fluctuations theory as well. For example, the
class of constraints (first or second) does not change after the linearization, and the structure
of the constraint algorithm remains the same. Since the linearization does not change the
number of first and second class constraints, it follows that the number of physical degrees of
freedom in both theories is the same.

We address in particular the issue of Noether symmetries. As regards the gauge ones, we
find that the first class constraints in the fluctuations theory always correspond to Abelian gauge
symmetries, since the non-Abelian symmetry cannot be described by quadratic Lagrangians.
Another interesting outcome is that the choice of the background may influence the expression
of the rigid Noether symmetries in the fluctuations theory. One part of these symmetries

14 [· · ·] acts on the indices inside the bracket as the antisymmetrization.
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(the one which mimics those of the original theory) is generated by the linear terms of the
fluctuations expansion of the original generators. If, however, it happens that some background
is preserved by a subset of the original rigid symmetries, then the fluctuations theory exhibits
rigid symmetries coming from the quadratic powers in the fluctuations of the original generator.
In supersymmetric theories this is the way for instance in which the symmetries preserved by
a BPS state are realized in the fluctuations theory.

As mentioned above, our results are reliable for systems with constant Hessian and around
non-degenerate solutions. For systems with degenerate solutions, the linear approximation
is no longer applicable. For example, a degenerate solution qo can lead to the ineffective
constraints (of the type (q −qo)2 � 0). After the linearization, these constraints vanish, which
effectively leads to the increase in the number of degrees of freedom. One example of such a
degenerate background in Chern–Simons supergravity is presented in [1] and they are treated
in Hamiltonian formalism in [12]. In Lagrangian formalism, they have not yet been studied.

Acknowledgments

OM would like to thank Jorge Zanelli for helpful discussions. JMP thanks Joaquim Gomis and
Jorge Russo for discussions and useful comments. This work was partially funded by Chilean
FONDECYT grant 3040026, the European Community’s Human Potential Programme under
contract MRTN-CT-2004-005104 ‘Constituents, fundamental forces and symmetries of the
universe’, the Spanish grant MYCY FPA 2004-04582-C02-01 and by the Catalan grant CIRIT
GC 2001, SGR-00065.

Appendix A. Identities with the bracket expansions

Here, we give some results used in the main text. For generic expansions of functions
f (q, p; t), g(q, p; t),

f (q, p; t) = fo(t) + εf1(Q, P ; t) + ε2f2(Q, P ; t) + O(ε3)
(A.1)

g(q, p; t) = go(t) + εg1(Q, P ; t) + ε2g2(Q, P ; t) + O(ε3),

(where fo(t) = f (qo(t), po(t); t), go(t) = g(qo(t), po(t); t) and f1 = Dhf, g1 = Dhg), the
following relations hold:

{f1, g1}̃ = {f, g}|o, (A.2)

Dh{f, g} = {f2, g1}̃ + {f1, g2}̃. (A.3)

The proofs are immediate, using (A.1) and the corresponding expansion for the bracket {f, g}.
Explicit time dependence has a different meaning in the original theory and in the

fluctuations theory because the change of variables q → qo + εQ is time dependent—qo

is in fact the trajectory qo(t). In particular, we have, in the canonical formalism (similar
results hold in the tangent space formulation),

∂
f

∂Q
= ε

∂

∂q

∂
f

∂P
= ε

∂

∂p

∂
f

∂t
= ∂

∂t
+ q̇o ∂

∂q
+ ṗo ∂

∂p
, (A.4)

where the superscript f stands for the fluctuation variables and is conventionally omitted in
the text. Note that

d

dt
= ∂

∂t
+ q̇

∂

∂q
+ ṗ

∂

∂p
+ · · · = ∂

f

∂t
+ Q̇

∂
f

∂Q
+ Ṗ

∂
f

∂P
+ · · ·

(where the dots indicate higher order tangent structures like q̈ ∂
∂q̇

+ p̈ ∂
∂ṗ

, etc), as it must be.
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One can also derive the following result used in the text:[
Dh,

∂

∂t

]
f = {P q̇o − Qṗo, f2}̃. (A.5)

Obviously, the lhs must be understood as Dh ◦ ∂
∂t

− ∂
f

∂t
◦ Dh. The proof of (A.5) is[

Dh,
∂

∂t

]
f = Q

∂f

∂q∂t

∣∣∣∣
o

+ P
∂f

∂p∂t

∣∣∣∣
o

− ∂

∂t

(
Q

∂f

∂q

∣∣∣∣
o

+ P
∂f

∂p

∣∣∣∣
o

)
= −

(
Q

∂f

∂q∂q

∣∣∣∣
o

q̇o + Q
∂f

∂q∂p

∣∣∣∣
o

ṗo + P
∂f

∂p∂q

∣∣∣∣
o

q̇o + P
∂f

∂p∂p

∣∣∣∣
o

ṗo

)
= −q̇o ∂f2

∂Q
− ṗo ∂f2

∂P
= {P q̇o − Qṗo, f2}̃. (A.6)

Appendix B. Multipliers in Hamilton–Dirac equations of motion

The Hamilton–Dirac e.o.m. are

q̇ = ∂H

∂p
+ λµ ∂φµ

∂p
, ṗ = −∂H

∂q
− λµ ∂φµ

∂q
, 0 = φ(0)

µ (q, p), (B.1)

where λµ are in principle arbitrary functions of time (in fact they may also be arbitrary
functions of the q and p variables in the Hamiltonian approach, but this is not relevant for
our discussion). Not any choice for these functions is allowed in the formalism, as it is seen
when one performs the Dirac–Bergman constraint algorithm, where eventually some of these
functions become determined in phase space whereas some others stay completely arbitrary
and in fact describe the gauge freedom (local symmetries) contained in the dynamics.

In spite of their initial arbitrariness in phase space, it is interesting to note that one can
always determine these arbitrary functions λµ as definite functions in tangent space. To this
end, one must first use the first equation in (B.1) and apply the pullback p → p̂; then, since
the matrix ∂φµ

∂p
has maximum rank, the algebraic equation for λµ’s,

q̇ = FL∗ ∂H

∂p
+ λµFL∗ ∂φµ

∂p
, (B.2)

can be solved for all λµ as functions λ
µ

def(q, q̇) defined in tangent space. The rationale for
this construction is as follows: if for some given set of arbitrary functions λµ(t) we obtain
a solution q(t), p(t) of (B.1), then λ

µ

def(q(t), q̇(t)) = λµ(t). In fact, the e.o.m. (B.1) are
completely equivalent to the following e.o.m.:

q̇ = ∂H

∂p
+ λ

µ

def(q, q̇)
∂φµ

∂p
, ṗ = −∂H

∂q
− λ

µ

def(q, q̇)
∂φµ

∂q
, 0 = φ(0)

µ (q, p). (B.3)

Thus, one can either work with arbitrary functions λµ(t), as in (B.1), or just consider that the
e.o.m. are (B.3). In (B.3), we see that the unknown q̇ appears not only in the lhs, but also in
the rhs. The impossibility of writing (B.3) in normal form15 is signalling the possible presence
of gauge freedom.

15 Differential equations are written in normal form when the highest derivatives can be isolated in the lhs.
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